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Abstract: 

The performance of wireless communication systems depends heavily 

on the design and optimization of antennas, particularly patch 

antennas, where the reflection coefficient S11 plays a pivotal role in 

assessing impedance matching and overall efficiency. Accurate 

prediction of S11 values is crucial for optimizing antenna 

performance, yet traditional methods such as the Method of Moments 

(MoM), Finite Element Method (FEM), and High-Frequency 

Structure Simulation (HFSS) tools often require extensive 

computational resources and domain expertise. These techniques, 

while reliable, are time-intensive and lack the adaptability required 

for rapid prototyping, especially in modern wireless technologies such 

as 5G, IoT, and satellite communications. Motivated by the increasing 

demand for faster and more cost-effective antenna design processes, 

this project explores the application of machine learning (ML) 

techniques for predicting S11 data. Traditional systems face 

challenges such as high computational expenses, reliance on iterative 

manual tuning, and limited scalability, which impede the ability to 

meet evolving industry requirements. The proposed solution 

addresses these limitations by utilizing regression-based ML models, 

including Ridge Regression, Lasso Regression, and Decision Tree 

Regressors, trained on S11 datasets to predict antenna performance 

with high accuracy. The ML-driven framework demonstrates 

significant advantages over traditional methods by reducing 

computational costs and accelerating design cycles while maintaining 

prediction accuracy. Metrics such as Mean Squared Error (MSE), 

Mean Absolute Error (MAE), and R2-scores validate the effectiveness 

of the proposed approach. Furthermore, the model's scalability and 

adaptability enable it to generalize across diverse antenna 

configurations, making it a robust tool for enhancing wireless 

communication design. By integrating machine learning into antenna 

design processes, this work represents a transformative step toward 

efficient, automated, and innovative solutions in wireless 

communication engineering. 
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1. INTRODUCTION 

1.1 Overview: 

Patch antennas are essential components of modern wireless 

communication systems due to their compact size, ease of integration, 

and cost-effectiveness. These antennas are widely used in applications 

such as cellular networks, satellite communication, Wi-Fi, IoT devices, 

and 5G technologies. In India, the rise of wireless communication 

technologies has led to an increased demand for efficient antenna 

designs, especially with the rapid expansion of 5G networks and smart 

devices. However, accurate prediction and optimization of antenna 

parameters, like the reflection coefficient S11, are critical to ensuring 

optimal performance, driving the need for advanced modelling 

techniques. Historically, predicting S11 values has been a challenge 

due to the complexity of antenna designs and the limitations of 

traditional simulation methods. 

1.2 Problem Statement: 

Before the advent of machine learning, predicting the S11 parameter 

in patch antenna designs relied on computationally expensive methods 

like the Finite Element Method (FEM), Method of Moments (MoM), 

and High-Frequency Structure Simulation (HFSS). These traditional 

approaches required substantial computational resources and time, 

limiting their practicality for rapid iterative design and optimization. 

Moreover, they often necessitated a high level of domain expertise to 

interpret the results and adjust designs accordingly, which added to the 

complexity and cost. These problems made it difficult to meet the fast- 

paced demands of modern communication systems, such as 5G and 

IoT, where quick prototyping and design adjustments are essential. 

1.3 Research Motivation: 

The motivation behind this research arises from the need to overcome 

the limitations of traditional simulation-based approaches for 

predicting S11 parameters. The growing complexity and demand for 

faster antenna designs in modern communication systems, such as 5G 

and IoT, require a more efficient solution. Machine learning offers the 

potential to reduce computational costs, automate the prediction 

process, and enable rapid prototyping. By integrating machine 

learning, we can optimize antenna performance more effectively, 

enabling faster, scalable, and cost-efficient design processes that meet 

the evolving needs of the wireless communication industry. 

1.4 Existing Systems: 

Existing systems for predicting S11 parameters rely on complex 

computational techniques like FEM, MoM, and HFSS. While these 

methods are highly accurate, they are computationally intensive and 

time-consuming, making them unsuitable for real-time or iterative 

design processes. The reliance on domain expertise and the need for 

manual adjustments further complicate these traditional systems, 

increasing the overall cost and time required for antenna optimization. 

Additionally, these methods lack the flexibility to quickly adapt to new 

designs or configurations, which is crucial in the fast-paced world of 

wireless communication. 

1.5 Significance: 

This project holds significant value in advancing the field of antenna 

design and wireless communication systems. By leveraging ML 

models such as Ridge, Lasso, and Decision Tree regression, the project 

introduces a data-driven approach to predict S11S11, reducing the 

reliance on costly simulations and physical testing. This not only 

improves the efficiency and accuracy of the design process but also 

enables rapid prototyping of antennas for emerging technologies. The 

integration of ML into antenna design workflows aligns with the 

broader trend of digital transformation in engineering domains, 

enhancing productivity and fostering innovation. Furthermore, the 

insights derived from this project contribute to the understanding of 

the relationship between design parameters and antenna performance, 

serving as a valuable resource for researchers and engineers. 

1.6 Need: 

The real-time need for this project arises from the rapidly evolving 

landscape of wireless communication technologies, such as 5G, IoT, 

and satellite communications. These advancements demand faster, 

more efficient antenna design and optimization to support the growing 

number of connected devices and the increasing data traffic. 

mailto:ashwithaaenugu81@gmail.com


IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501 

Vol.15, Issue No 2, 2025 

 

 

 

 

753  

Traditional methods of predicting S11 parameters are no longer 

sufficient to meet the speed and scalability requirements of modern 

communication systems. Machine learning offers an automated, data- 

driven approach to improve the accuracy and efficiency of antenna 

design, enabling real-time predictions and optimizations that align 

with the fast-paced nature of the industry. By reducing computational 

costs and time, this project can significantly enhance the development 

of next-generation wireless communication infrastructure. 

1.7 Application: 

1.7.1 5G Networks: 

Patch antennas optimized for S11 are crucial in building compact and 

efficient devices for 5G communication systems, ensuring minimal 

signal loss and improved performance. 

1.7.2 Internet of Things (IoT): 

The project facilitates the design of miniaturized antennas for IoT 

devices, enabling seamless connectivity in smart homes, healthcare, 

and industrial automation. 

1.7.3 Satellite Communication: 

High-performance antennas with optimal S11 values ensure reliable 

signal transmission and reception in satellite systems, enhancing data 

throughput and coverage. 

1.7.4 Antenna Prototyping and Testing: 

The ML-driven approach reduces the time and cost associated with 

traditional antenna prototyping, making it invaluable for research labs 

and the telecommunications industry. 

1.7.5 Electromagnetic Education: 

The insights and tools developed can aid in teaching and training new 

engineers in advanced antenna design concepts. 

2. LITERATURE SURVEY 

The paper deals with modelling the stochastic behaviour of the 

reflection coefficient of ordinary patch antennas for n257 and n258 

frequency bands (24.5–28.7 GHz). The patch antennas are among the 

main candidates for application in the area of 5G wireless services. 

Their fractional bandwidth is about 1–3%; however, in the K, Ka, and 

higher bands, this small fractional bandwidth translates into a wide 

absolute bandwidth, which is about 600 MHz for the case of the patch 

antennas considered in this paper. Many scientific publications have 

been devoted to designing and optimizing the patch antennas, e.g., [1]. 

In this research, a single band micro-strip square patch antenna at 

28GHz is proposed. The design of patch antennas are very efficient 

and widely used in wireless communication due to their lower cost of 

fabrication, light weight and can operate at microwave frequencies but 

it offers low efficiency, low gain etc. Future upcoming 5G wireless 

communication is needed of high gain, good protection from path loss 

because of their millimetre wavelength of antennas [2]. 

A compact dual-frequency (38/60 GHz) microstrip patch antenna with 

novel design is proposed for 5G mobile handsets to combine 

complicated radiation mechanisms for dual-band operation. The 

proposed antenna is composed of two electromagnetically coupled 

patches. The first patch is directly fed by a microstrip line and is mainly 

responsible for radiation in the lower band (38 GHz). The second patch 

is fed through both capacitive and inductive coupling to the first patch 

and is mainly responsible for radiation in the upper frequency band 

(60 GHz) [3]. This paper addresses a low profile multiband microstrip 

patch antenna design for 5G mm-Wave wireless networks, applications 

and devices. The proposed patch antenna has a compact rectangular- 

Shaped structure of 8.6 x 9.2 x 0.6 mm 3 including the ground plane 

and the slotted inset feed line, which is suitable to be used in smart 

handheld devices. The antenna operating at 23.8 GHz, 39.4 GHz, 66.2 

GHz, 81.9 GHz and 93.9 GHz mm-Wave bands with a maximum 

bandwidth of 1.4663 GHz, 2.5634 GHz, 5.6609 GHz, 7.9341 GHz and 

11.3 GHz respectively [4]. The design and simulation of a microstrip 

patch antenna for 5G mobile networks is presented in this paper. The 

antenna operates at the Local Multipoint Distribution Service band 

having a centre frequency at 28 GHz. The antenna was designed on a 

Rogers RT Duroid 5880 of height 0.5mm and a dielectric constant of 

2.2. Slits were introduced unto the patch to enhance the bandwidth, 

gain of the antenna [5]. Communication systems have been driven 

towards the fifth generation (5G) due to the demands of compact, high 

speed, and large bandwidth systems. These types of radio 

communication systems require new and more efficient antenna 

designs. This article presents a new design solution of a broadband 

microstrip antenna intended for use in 5G systems. The proposed 

antenna has a central operating frequency of 28 GHz and can be used 

in the LMDS (local multipoint distribution service) frequency band 

[6]. In this case, the convergence rate and accuracy of the PCE-based 

UQ cannot be guaranteed. Further, when models involve non- 

polynomial forms, the PCE-based UQ can be computationally 

impractical in the presence of many parametric uncertainties. To 

address these issues, the Gram-Schmidt (GS) orthogonalization and 

generalized dimension reduction method (GDRM) are integrated with 

the PCE in this work to deal with many parametric uncertainties that 

follow arbitrary distributions [7]. 

In the paper, we present a novel PCE-based approach for the effective 

analysis of worst-case scenario in a wireless telecommunication 

system. Usually, in such analysis derivation of polynomial chaos 

expansion (PCE meta-model) of a considered EM field function for 

one precise set of probability densities of random variables does not 

provide enough information. Consequently, a number of PCE meta- 

models of the EM field function should be derived, each for the 

different joint probability density of a vector of random variables, e.g., 

associated with different mean (nominal) values of random variables. 

The general polynomial chaos (GPC) approach requires numerical 

calculations for each PCE meta-model derivation [8]. The 

uncertainties in various Electromagnetic (EM) problems may present 

a significant effect on the properties of the involved field components, 

and thus, they must be taken into consideration. However, there are 

cases when a number of stochastic inputs may feature a low influence 

on the variability of the outputs of interest. Having this in mind, a 

dimensionality reduction of the Polynomial Chaos (PC) technique is 

performed, by firstly applying a sensitivity analysis method to the 

stochastic inputs of multi-dimensional random problems [9]. 

Soil materials can exhibit strongly dispersive properties in the 

operating frequency range of a physical system, and the uncertain 

parameters of the dispersive materials introduce uncertainties in the 

simulation result of propagating waves. It is essential to quantify the 

uncertainty in the simulation result when the acceptability of these 

calculation results is considered. To avoid performing thousands of 

full-wave simulations, an efficient surrogate model based on artificial 

neural networks (ANNs) is proposed in this paper, to imitate the 

concerned ground penetrating radar (GPR) calculation [10]. This paper 

focuses on quantifying the uncertainty in the specific absorption rate 

values of the brain induced by the uncertain positions of the 

electroencephalography electrodes placed on the patient’s scalp. To 

avoid running a large number of simulations, an artificial neural 

network architecture for uncertainty quantification involving high- 

dimensional data is proposed in this paper. The proposed method is 

demonstrated to be an attractive alternative to conventional uncertainty 

quantification methods because of its considerable advantage in the 

computational expense and speed [11]. An advanced method of 

modelling radiofrequency (RF) devices based on a deep learning 

technique is proposed for accurate prediction of S parameters. The S 

parameters of RF devices calculated by full-wave electromagnetic 

solvers along with the metallic geometry of the structure, permittivity, 

and thickness of the dielectric layers of the RF devices are used partly 

as the training and partly as testing data for the deep learning structure. 

To implement the training procedure efficiently, a novel selection 

method of training data considering critical points is introduced [12]. 
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The corresponding number for the standard deviation of S11 is 7. In 

both cases, the optimal number of neurons in each of ANN layers is 

about 20; however, for the case of the standard deviation of S11, it 

should be slightly less, e.g., 18. The value of parameter ϵ in (2) equals 

10−8. It was also observed that the algorithm of SGD with Replacement 

enables us to obtain much better approximation results than the 

approach with Random Reshuffling [13]. In empirical risk 

optimization, it has been observed that gradient descent 

implementations that rely on random reshuffling of the data achieve 

better performance than implementations that rely on sampling the 

data randomly and independently of each other. Recent works have 

pursued justifications for this behaviour by examining the convergence 

rate of the learning process under diminishing step-sizes. Some of 

these justifications rely on loose bounds, or their conclusions are 

dependent on the sample size which is problematic for large datasets 

[14]. 

The work that is the closest to the content presented in this paper can 

be found in where ANN modelling of deterministic S parameters is the 

subject of the study. It can be observed that the authors of found the 

same optimal number of neurons in the ANN layer as in this work; 

however, the variation of input data is much stronger in the case of this 

paper. The MATLAB format data containing the weights and biases of 

the derived ANNs can be downloaded from [15]. 

3. PROPOSED METHODOLOGY 

3.1 Overview: 

This project leverages machine learning techniques to enhance the 

performance of wireless communication systems by modelling and 

predicting the S11 (reflection coefficient) data for patch antennas. 

Patch antennas are widely used in communication systems due to their 

compact size, cost-effectiveness, and ease of integration into modern 

devices. The project aims to optimize the design process of these 

antennas using regression models. 

3.2 Objectives: 

3.2.1 Model S11 Behaviour: 

• Predict the S11 parameter based on design features such as patch 

dimensions, substrate material, and operating frequency. 

• Understand the relationship between design parameters and 

antenna performance. 

3.2.2 Enhance Design Efficiency: 

Reduce the time and cost associated with traditional iterative antenna 

design and testing by predicting performance metrics using machine 

learning. 

3.2.3 Compare Regression Models: 

Evaluate and compare the performance of different regression 

algorithms (Ridge, Lasso, Decision Tree) in predicting S11. 

3.3 Key Components: 

3.3.1 Dataset: 

• The dataset contains antenna design parameters (features) and 

corresponding S11 values (target). 

• Features may include patch dimensions, substrate properties, and 
frequency. 

• The target variable, S11, is a critical metric for evaluating the 

impedance matching and efficiency of the antenna. 

3.3.2 Regression Techniques: 

The project implements three regression models to predict S11 

• Ridge Regression: A linear regression model with L2 
regularization to prevent overfitting and handle multicollinearity. 

• Lasso Regression: A linear regression model with L1 
regularization to perform feature selection by shrinking less 
important feature coefficients to zero. 

• Decision Tree Regressor: A non-linear regression model that 

splits the data into decision nodes based on feature values, 

allowing it to capture complex relationships. 

3.3.3 Metrics and Visualization: 

To evaluate the performance of each model, the following metrics are 

computed: 

• Mean Squared Error (MSE): Measures the average squared 
difference between predicted and actual S11 values. 

• Mean Absolute Error (MAE): Measures the average magnitude 
of errors. 

• R2 Score: Represents the proportion of variance in S11 explained 
by the model. 

• Visualization: Scatter plots of actual vs. predicted values are 

used to visualize model performance. 

3.3.4 Model Persistence: 

• Models are saved using the job lib library to avoid retraining in 
future runs. 

• Saved models are reloaded if they exist, ensuring efficient use of 

resources. 

3.3.5 Random Sampling for Testing: 

• A random sample of 100 rows is extracted from the dataset to 
validate model predictions. 

• The sample is saved to a CSV file, and predictions are appended 

for further analysis. 
 

Figure 3.1: Proposed system Block Diagram 

 

 

3.4 Workflow: 

3.4.1 Data Preparation: 

• Load the dataset and check for duplicates, missing values, and 
basic statistics. 

• Split the data into training and testing subsets. 
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3.4.2 Model Training and Evaluation: 

• Train Ridge, Lasso, and Decision Tree models on the training 

data. 

• Evaluate models on the test data using MSE, MAE, and R2R^2 
metrics. 

• Visualize prediction accuracy with scatter plots. 

3.4.3 Model Persistence: 

• Save trained models for future use. 

• Reload models if available to bypass retraining. 

3.4.4 Prediction on Unseen Data: 

• Use the trained Decision Tree model to predict S11 for a random 
sample of new data. 

• Append predictions to the dataset for analysis. 

3.4.5 Comparison of Results: 

Compare the performance of all regression models to identify the most 

accurate and reliable approach. 

3.5 Significance of the Project: 

3.5.1 Improved Wireless Communication: 

By optimizing patch antenna design, the project directly contributes to 

better wireless communication systems with higher efficiency and 

lower signal loss. 

3.5.2 Cost and Time Efficiency: 

Predicting S11using machine learning significantly reduces the need 

for physical prototyping and testing, saving time and resources. 

3.5.3 Scalability: 

The approach can be extended to other antenna parameters and types, 

making it versatile for broader applications. 

3.6 Applications: 

3.6.1 5G and IoT: 

Patch antennas are critical components in compact devices used in 5G 

networks and IoT devices. 

3.6.2 Satellite Communication: 

Optimizing S11 ensures reliable signal transmission in satellite 

systems. 

3.6.3 Antenna Design Automation: 

The project serves as a foundation for automating the design process 

of antennas using ML techniques. 

3.7 Future Enhancements: 

3.7.1 Hyperparameter Tuning: 

Optimize parameters for each regression model using grid search or 

random search. 

3.7.2 Feature Importance Analysis: 

Identify which design parameters have the most significant impact on 

S11 performance. 

3.7.3 Integration with Simulation Tools: 

Combine ML models with electromagnetic simulation software for a 

hybrid design approach. 

3.7.4 Advanced Models Explore: 

Use ensemble methods (e.g., Random Forest, Gradient Boosting) or 

deep learning for improved accuracy. 

3.8 Model Building: 

A decision tree is a popular machine learning algorithm used for both 

classification and regression tasks. It works by recursively partitioning 

the feature space into distinct regions based on feature values, making 

decisions at each node to select the best possible split. The tree 

structure consists of: 

3.8.1 Root Node: 

The starting point, representing the entire dataset. 

3.8.2 Branches: 

Represent decisions based on feature values that guide to further 

nodes. 

3.8.3 Leaf Nodes: 

Represent the final prediction or output based on the features. 

In the context of regression, a decision tree predicts a continuous value 

by splitting the dataset based on feature values at each internal node. 

These splits aim to minimize the variance in the target variable within 

each resulting subset. 

3.9 Advantages of Decision Tree: 

3.8.1 Simple to Understand and Interpret: 

Decision trees are easy to visualize, making them interpretable even 

for non-experts. They can be represented graphically as a tree 

structure, where each decision is clear. 

3.9.2 No Need for Data Normalization: 

Unlike many other algorithms, decision trees don't require the data to 

be normalized or standardized. They can handle both numerical and 

categorical data effectively. 

3.9.3 Can Handle Non-linear Relationships: 

Decision trees can capture non-linear relationships between features 

and target variables, making them versatile for complex data patterns. 

3.9.4 Handles Missing Values: 

Decision trees can handle missing data by automatically handling or 

inferring the missing values during the tree-building process. 

3.9.5 Flexibility: 

They can be used for both regression and classification problems, 

making them flexible for various types of tasks. 

3.9.6 Works Well with Both Small and Large Datasets: 

Decision trees perform well with smaller datasets and can also scale 

for large datasets, especially when combined with ensemble 

techniques like Random Forests. 

3.9.7 Feature Importance: 

Decision trees provide valuable insights into which features have the 

most influence on the predictions, which can help in feature selection. 

3.10 How Decision Tree is Used in the Project? 

In our project, the Decision Tree Regressor is used to predict the S11 

(reflection coefficient) of patch antennas based on their design 

parameters. Here's how it is applied: 

3.10.1 Feature Space Partitioning: 

The decision tree algorithm splits the dataset based on the values of 

design parameters (e.g., patch dimensions, frequency, material 

properties) to predict S11. For instance, if the patch length is small, the 

algorithm might predict a certain range for S11, while for larger 

patches, it might predict a different range. 
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3.10.2 Training Process: 

The tree is trained using historical data consisting of antenna design 

features and their corresponding S11 values. Each node in the tree tries 

to minimize the mean squared error (MSE) within the resulting 

subsets, optimizing the tree structure to best predict S11. 

3.10.3 Prediction: 

Once trained, the decision tree can make predictions for new antenna 

designs. Given a set of design parameters, the model will traverse the 

tree, making decisions at each node, until it reaches a leaf node, where 

it outputs the predicted S11 value. 

3.10.4 Model Evaluation: 

The performance of the decision tree is evaluated using metrics such 

as Mean Squared Error (MSE), Mean Absolute Error (MAE), and 

R2R^2 score. These metrics help assess how well the decision tree is 

predicting the S11 values for unseen antenna designs. 

3.10.5 Model Comparison: 

The decision tree is compared with other regression models (e.g., 

Ridge and Lasso regression) to determine which model provides the 

most accurate predictions for S11. 

3.10.6 Interpretation: 

The tree structure allows engineers to understand how different design 

parameters influence the predicted S11. This can provide valuable 

insights into antenna design and help optimize future antenna 

structures. 

4. EXPERIMENTAL ANALYSIS 

4.1 Implementation Description: 

The implementation of the machine learning (ML)-driven 

enhancement in wireless communication performance through 

regression modelling of S11 data for patch antennas involves several 

steps, each strategically designed to achieve improved performance 

prediction and optimization of antenna designs. Below is a detailed 

description of the implementation process: 

4.1.1 Libraries and Setup: 

Libraries: 

• Necessary libraries for data manipulation, visualization, machine 
learning, and model persistence are imported: 

• numpy and pandas for numerical and tabular data processing. 

• seaborn and matplotlib for visualizations. 

• sklearn for regression models, metrics, and data splitting. 

• joblib for saving and loading models. 

• os for file existence checks. 

Warnings: 

Suppress warnings to improve output readability. 

4.1.2 Data Loading and Exploration: 

Dataset Import: 

Load an Excel file (for_proj.xlsx) containing antenna design and S11 

data using pandas. read excel. 

Initial Exploration: 

• info () and. describe (): Display dataset structure, data types, and 
summary statistics. 

• Check for duplicates and null values using. duplicated (). sum () 
and .is null (). sum (). 

• Analyse the distribution of the target variable S11 using .value 

counts (). 

4.1.3 Data Splitting: 

Separate the dataset into: 

• Features (X) - all columns except the target. 

• Target (y) - S11 values. 

Use train_test_split to divide the data into training (80%) and testing 

(20%) subsets with a fixed random state for reproducibility. 

4.1.4 Metrics Calculation Function: 

A utility function, calculate metrics, evaluates model performance. 

Computes: 

• Mean Squared Error (MSE): Measures average squared 
difference between predicted and actual values. 

• Mean Absolute Error (MAE): Measures the average magnitude 
of prediction errors. 

• R2R^2 score: Measures how well predictions match the actual 

values. 

Appends the metrics to pre-defined lists for comparison. 

Creates a scatter plot of actual vs. predicted values, with a diagonal 

line indicating perfect predictions. 

4.1.5 Regression Models: 

For each regression model (Ridge, Lasso, Decision Tree): 

• Model Loading: Check if a pre-trained model file exists using 
os.path.exists. 

• Training: If no model is found. 

Train the model on the training set (x_train, y_train). 

Save the model using joblib.dump for future use. 

Prediction and Evaluation: 

• Use the model to predict on the testing set (x_test). 

• Call calculates metrics to calculate metrics and visualize 

performance. 

4.1.6 Decision Tree Regressor: 

A Decision Tree Regressor is trained to predict S11: 

• Fits the model on x_train and y_train. 

• Calculates MSE and R2R^2 score directly for quick evaluation. 

4.1.7 Random Sampling and Predictions: 

Random Sample Creation: 

• Selects 100 random rows from the dataset for prediction. 

• Saves the sample to a CSV file (test.csv). 

Prediction: 

• Drops the S11 column (target) from the sample. 

• Predicts the S11 values using the Decision Tree model. 

• Appends the predicted values to the test dataset for further 

analysis or visualization. 

4.1.8 Key Features of the Code: 

Model Persistence: 

Ridge, Lasso, and Decision Tree models are saved and loaded to avoid 

retraining. 

Metrics and Visualization: 

Provides a detailed evaluation of model performance. 

Flexibility: 

Easily extendable to include additional regression models or handle 

other datasets. 
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Random Sampling: 

Allows testing on unseen data to validate the generalization capability 

of the models. 

4.2 Dataset Description: 

The dataset used in the project contains data on various design 

parameters of patch antennas and their corresponding S11(reflection 

coefficient) values, which indicate the impedance matching between 

the antenna and its transmission line. The dataset is crucial for training 

machine learning models to predict the S11values based on input 

design features, enabling more efficient and automated antenna design 

processes. 

4.2.1 Key Characteristics of the Dataset: 

Number of Samples: 

The dataset consists of multiple records (rows), each corresponding to 

a unique antenna design with its respective design parameters and 

S11value. 

Features: 

The dataset includes several features (columns) that represent the 

design parameters of the antennas. These features determine how the 

antenna is constructed and how it behaves in a specific environment. 

The features may include: 

• Patch Length: The physical length of the antenna patch (in 
millimeters or other units). 

• Patch Width: The physical width of the antenna patch. 

• Substrate Material: The type of material used for the substrate 
beneath the antenna patch (e.g., FR4, Rogers). 

• Substrate Thickness: The thickness of the substrate material. 

• Frequency: The operating frequency of the antenna (in GHz). 

• Feed Location: The position at which the antenna is fed with the 
signal. 

• Dielectric Constant: The relative permittivity or dielectric 
constant of the substrate material. 

• Loss Tangent: The loss tangent of the material, which indicates 

its energy dissipation. 

Target Variable: 

The target variable in the dataset is the S11value, which represents the 

reflection coefficient of the antenna. The S11value is typically 

provided in decibels (dB) and indicates how well the antenna is 

matched to the transmission line. A lower S11value signifies better 

impedance matching and less reflection, which is desired for optimal 

antenna performance. 

Data Format: 

The dataset is structured as a tabular format (e.g., Excel or CSV file), 

where each row represents a single antenna design, and each column 

corresponds to a specific feature or the target variable. For example, 

the final column would contain the S11values, while the other columns 

contain the input design parameters. 

4.2.2 Key Insights from the Dataset: 

Feature-Target Relationship: 

The dataset captures complex relationships between design parameters 

and the S11 value, which may be non-linear. For instance, the patch 

length, substrate material, and frequency have direct impacts on the 

S11value, and these interactions are crucial for antenna optimization. 

Data Preprocessing:Before applying machine learning algorithms, 

the dataset may require preprocessing steps, such as handling missing 

values, scaling numerical features (e.g., patch length and width), and 

encoding categorical variables (e.g., substrate material). 

Target Distribution: 

The S11values are expected to be negative, as they represent a measure 

of reflection, with values closer to zero indicating poor impedance 

matching. The dataset may contain both good (low S11) and poor (high 

S11) designs, offering a wide range of training examples for the model. 

Data Quality: 

The dataset needs to be free of errors, duplicates, and missing values. 

Preprocessing steps such as data cleaning and handling outliers will 

ensure that the machine learning model can make accurate predictions. 

4.3 Result Description: 

 

 

 

Figure 4.1: Uploading a Sample Dataset 

 

 

Figure 4.2: Heat map for column importance 
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Figure 4.3: Displaying the regression report of Ridge model. 

The Figures 4.3 and 4.4 displays the evaluation metrics of a Ridge 

Regression model after loading an existing model. It presents three key 

performance indicators used to assess the model’s accuracy. The Mean 

Squared Error (MSE) is 11.9673, which represents the average squared 

difference between actual and predicted values. The Mean Absolute 

Error (MAE) is 1.6623, showing the average absolute difference 

between predictions and actual values. The R² Score is 0.1788, 

indicating that the model explains only 17.88% of the variance in the 

target variable, suggesting weak predictive performance. Additionally, 

there is a small formatting issue with an extra dot appearing before 

Error in the MAE line. 

 

 

Figure 4.4: Illustration of confusion matrix obtained using Ridge 

model. 
 

Figure 4.5: Displaying the regression report of Lasso model. 

The Figures 4.5 and 4.6 shows the evaluation results of a Lasso 

Regression model. It first loads an existing model and then displays 

three key performance metrics. The Mean Squared Error (MSE) is 

11.9673, representing the average squared difference between actual 

and predicted values. The Mean Absolute Error (MAE) is 1.6623, 

indicating the average absolute difference. The R² Score is 0.1788, 

suggesting that the model explains only 17.88% of the variance in the 

data, meaning it has poor predictive performance. Additionally, there 

is a small formatting issue with an extra dot before the R² score. 

 

 

Figure 4.6: Illustration of confusion matrix obtained using Lasso 

model. 
 

 

Figure 4.7: Displaying the regression report of Decision Tree 

model. 

The Figures 4.7 and 4.8 shows the evaluation metrics of a Decision 

Tree Regression model after loading an existing model. It presents 

three key performance indicators used to assess the model’s accuracy 

and predictive capability. The Mean Squared Error (MSE) is 0.2129, 

indicating that the model's predictions are very close to actual values. 

The Mean Absolute Error (MAE) is 0.0704, showing a very low 

average absolute difference between predictions and actual values. The 

R² Score is 98.22, which suggests that the model explains almost all 

the variance in the target variable, indicating an extremely high 

predictive performance. However, such a high score may suggest 

overfitting, meaning the model might not generalize well to new data. 

Additionally, there is a minor formatting issue with an extra dot 

appearing before R² Score. 

 

Figure 4.8: Illustration of confusion matrix obtained using 

Decision Tree model. 
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Model name 

 

 

MSE 

 

 

𝑅2-score 

 

 

Ridge Regressor 

 

 

11.9 

 

 

0.178 

 

 

Lasso Regressor 

 

 

11.96 

 

 

0.17 

 

 

Decision Tree 

 

 

0.21 

 

 

98.22 

Table-1: Comparison of all models 

The Table-1 compares the performance of three regression models: 

Ridge Regressor, Lasso Regressor, and Decision Tree. The Ridge 

Regressor has an MSE of 11.9 and an R²-score of 0.178, indicating a 

moderate fit with some prediction error. The Lasso Regressor performs 

slightly better, with an MSE of 11.96 and an R²-score of 0.11, showing 

improved accuracy over Ridge. However, the Decision Tree model 

exhibits a very high R²-score of 98.22, suggesting a strong fit to the 

data, though its MSE is significantly higher at 0.21, which could 

indicate overfitting. These results demonstrate the trade-off between 

model complexity and generalization. 

5. CONCLUSION 

This project demonstrates the use of machine learning, particularly 

Ridge, Lasso, and Decision Tree regression models, to predict the S11 

(reflection coefficient) of patch antennas based on design parameters. 

By applying these models, the project offers a data-driven approach, 

reducing the need for extensive physical prototyping and 

electromagnetic simulations, thus saving time and resources in antenna 

design. 

The models were trained and tested on an antenna design dataset, with 

performance assessed using MSE, MAE, and R² scores. Among them, 

the Decision Tree Regressor effectively captured non-linear 

relationships, making it a strong tool for predicting antenna 

performance. This project underscores the role of machine learning in 

optimizing antenna designs for next-gen applications like 5G, IoT, and 

satellite communication. 
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